
16 stycznia 2026
rozwiązania zadań zawodów II stopnia, II OAJ

Zadanie 1
Rezonans orbitalny jest ciekawym zjawiskiem, w którym dwa ciała okrążające bardziej masywny obiekt

cyklicznie oddziałują ze sobą grawitacyjnie, a stosunek ich okresów orbitalnych jest stosunkiem dwóch nie-
dużych liczb całkowitych. Oznacza to, że na daną liczbę obiegów wykonanych przez pierwsze ciało przypada
pewna inna liczba okrążeń ciała drugiego wokół bardziej masywnej gwiazdy/planety.

W Układzie Słonecznym wiele par ciał wykazuje rezonans orbitalny. Przykładem jest Neptun i Pluton,
o okresach orbitalnych odpowiednio 164,8 lat i 247,1 lat, tzn. na trzy okrążenia Neptuna wokół Słońca
przypadają prawie dokładnie dwa odpowiednie okrążenia przez Plutona. Mówimy więc, że Neptun i Pluton
wykazują rezonans 2:3. To samo zjawisko obserwujemy w przypadku trzech księżyców okrążających Jowisza
– Io, Europy i Ganimedesa, o okresach kolejno 1,77, 3,55 i 7,15 dnia – tutaj mamy do czynienia z rezonansem
aż trzech obiektów w stosunku 1:2:4.

Układ gwiazdy TRAPPIST-1 to znany układ planetarny posiadający aż 7 odkrytych egzoplanet krążących
wokół gwiazdy centralnej o masie M = 0,09M⊙. Orbity wszystkich egzoplanet są bardzo bliskie orbitom
kołowym. Zakładając, że planeta d obiega gwiazdę TRAPPIST-1 po orbicie o promieniu rd = 0,0223 au,
promień orbity planety e wynosi re = 0,0293 au, a promień orbity planety f wynosi rf = 0,0385 au, oblicz
okresy orbitalne tych planet. Wyniki podaj w dniach. Czy któreś pary planet wykazują rezonans
orbitalny? Jeśli tak, wskaż które i zapisz, jaki to rezonans (np. 2:3).

autor: Michał Jagodziński

Rozwiązanie
Zapisując równowagę siły odśrodkowej oraz siły przyciągania grawitacyjnego w układzie TRAPPIST-1

(zakładamy pomijalną masę planet względem gwiazdy centralnej) dla wybranej planety, mamy:

mv2

r
=

GMm

r2
,

gdzie m, v, r to odpowiednio masa, prędkość i promień orbity wybranej planety. Zapisując prędkość na
orbicie jako:

v =
2πr

P
,

gdzie P – okres orbitalny wybranej planety, otrzymujemy, podstawiwszy do pierwszej równości:

GMm

r2
=

m 4π2r2

P 2

r
=

4π2rm

P 2

Czyli:
r3

P 2
=

GM

4π2

Równość ta jest znana jako tzw. III prawo Keplera (dla orbity kołowej). Łatwo z niej wyprowadzić wzór na
okresy orbitalne planety wokół gwiazdy centralnej:

P = 2π

√
r3

GM

Podstawiając odpowiednie wartości otrzymujemy okresy orbitalne planet d, e i f:

Pd ≈ 350 000 s = 4,05 dnia; Pe ≈ 528 000 s = 6,11 dnia; Pf ≈ 795 000 s = 9,20 dnia.

Widzimy, że:
Pf

Pe
≈ 3

2
≈ Pe

Pd
,

zatem zarówno para planet d–e, jak i e–f wykazuje rezonans 2:3, albo inaczej: trójka planet d–e–f wykazuje
rezonans 4:6:9.

Uwagi. Na olimpiadzie nie trzeba było wyprowadzać wzoru na III prawo Keplera. Jest to znany wzór,
znajdujący się w zakresie na II etap w programie merytorycznym OAJ.
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Jednym z częstych sposobów rozwiązania tego zadania przez uczestników było wpierw obliczenie prędkości
orbitalnej każdej z planet korzystając ze wzoru v =

√
GM
r , a następnie podstawiając do v = 2πr

P , obliczenie
okresu obiegu. Rozwiązanie to jest w pełni analogiczne do przedstawionego, z tym że wymaga ono nieco
więcej rachunków.

Aby zmniejszyć ilość liczenia i uniknąć niepotrzebnych błędów, warto sprytnie zauważyć, że:

(1 au)3

(1 rok)2
=

GM⊙

4π2
.

Po podzieleniu uogólnionego prawa Keplera przez tę równość odpowiednio stronami, otrzymujemy, że:

(r/1 au)3

(P/1 rok)2
= M/M⊙,

co oznacza tylko tyle, że w przypadku podania promienia orbity w jednostkach astronomicznych i masy
ciała centralnego w jednostkach masy Słońca, poniższy wzór zwróci okres orbitalny w latach:

P =

√
(r/1 au)3

M/M⊙
lat

Dla planety d otrzymujemy: Pd =
√

0,02233

0,09 lat = 0,0111 lat = 4,05 dnia. Zainteresowanemu czytelnikowi
pozostawiamy sprawdzenie, że wzór ten jest poprawny także dla planety e, f, a także dowolnego innego ciała
krążacego w dowolnym innym układzie wokół masywnego ciała centralnego (jeśli zamiast promienia orbity
ciała podstawimy jej wielką półoś).

autor rozwiązania: Michał Jagodziński
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Zadanie 2
Zaobserwowano Międzynarodową Stację Kosmiczną (ISS) wyłaniającą się spod horyzontu.

a) W momencie obserwacji ISS znajdowała się w odległości d = 2319 km od obserwatora. Oblicz wysokość
ISS nad powierzchnią Ziemi.

b) Zakładając, że ISS porusza się po orbicie kołowej wokół Ziemi, oblicz prędkość ISS.

Załóżmy, że obserwator znajduje się na równiku i długości geograficznej λ = +40◦ (40◦ E). Widzi on ISS
wyłaniającą się spod horyzontu dokładnie na południu.

c) W tym samym momencie ISS znajdowała się w zenicie dla obserwatora znajdującego się na współrzęd-
nych geograficznych φ = −20◦, λ = +40◦. Podaj współrzędne horyzontalne ISS tam obserwowanej.

d) Istnieje inny punkt na Ziemi niż ten podany w treści zadania, z którego ISS może być w tamtym mo-
mencie obserwowana dokładnie na horyzoncie. Podaj jego współrzędne geograficzne oraz współrzędne
horyzontalne ISS stamtąd obserwowanej. Odpowiedź uzasadnij.

e) Oszacuj, jaki fragment globu jest widoczny z pokładu ISS. Wynik podaj w procentach.

autor: Michał Jagodziński

Rozwiązanie

S

Obserwator (O) ISS

R⊕
R⊕

+
H

d

Rysunek 1: Rysunek poglądowy do podpunktu a).

a) Horyzont jest granicą między częścią nieba możliwą do obserwacji w danym miejscu a tą, zasłoniętą
w danym momencie dla obserwatora przez Ziemię. Granica ta (pomijając wpływ refrakcji atmosferycznej)
jest linią styczną do powierzchni Ziemi. W przypadku, gdy obserwator znajduje się na niewielkiej wysokości
(w porównaniu do promienia Ziemi) nad powierzchnią Ziemi, horyzont jest wyznaczany przez powierzchnię
styczną do punktu, w którym znajduje się obserwator.

Sytuację opisaną w podpunkcie a) obrazuje zatem rysunek 1. Przez S oznaczyliśmy tutaj środek Ziemi.
Odcinek OS to więc oczywiście promień Ziemi R⊕, a odległość od obserwatora do ISS wynosi d. Łatwo więc
wyznaczyć odległość od środka Ziemi do ISS – równą R⊕ +H – korzystając z twierdzenia Pitagorasa. Stąd
prostymi przekształceniami algebraicznymi (które niestety zgubiły wielu uczestników, którzy zapomnieli o
wzorach skróconego mnożenia) możemy otrzymać wzór na wysokość ISS nad powierzchnią ziemi (ozn. H):

R2
⊕ + d2 = (R⊕ +H)2√
R2

⊕ + d2 = R⊕ +H

H =
√
R2

⊕ + d2 −R⊕ = 409 km

Widzimy zatem, że satelita krąży stosunkowo nisko nad powierzchnią Ziemi – na naszym rysunku wyso-
kość ISS jest więc znacząco wyolbrzymiona.

b) Znając promień orbity ISS, równy rorb = R⊕ + H = 6780 km, ze wzoru na prędkość orbitalną,
obliczamy:

vISS =

√
GM⊕

rorb
=

√
GM⊕

R⊕ +H
= 7670m/s = 7,67 km/s
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c) Współrzędne horyzontalne to azymut astronomiczny (A; od 0◦ do 360◦) oraz wysokość (h; od −90◦ do 90◦).
Azymut obiektu jest kątem między kierunkiem w poziomie na obiekt (tu ISS) a kierunkiem południowym,
liczonym w prawo (tj. południe ma azymut 0◦, wschód – azymut 90◦, a zachód – azymut 270◦). Wyznaczenie
azymutu na sferze niebieskiej jest analogiczne do ustalenia długości geograficznej (E – W) na kuli ziemskiej
(gdy horyzont odpowiada równikowi Ziemi). Często stosuje się też konwencję, w której azymut (liczony
także w prawo) mierzony jest od geograficznego kierunku na północ. Dlatego dobrą praktyką jest zapisanie,
w jakiej konwencji podajemy azymut.

Wysokość (kątowa) obiektu to zaś kąt między obiektem a płaszczyzną (kołem na sferze niebieskiej) hory-
zontu. Obiekty na horyzoncie mają wysokość 0◦, obiekty w zenicie: 90◦, a obiekty w nadirze: −90◦. Wszyst-
kie obiekty powyżej horyzontu mają dodatnią wysokość, a te znajdujące się pod horyzontem – ujemną.
Wyznaczenie wysokości na sferze niebieskiej jest analogiczne do ustalenia szerokości geograficznej (N – S) na
kuli ziemskiej.

Dobre zrozumienie tych pojęć pozwala łatwo określić współrzędne horyzontalne ISS dla obserwatora
opisanego w podpunkcie c). Dla niego, ISS znajduje się dokładnie w zenicie. Zatem wysokość ISS wynosi
dokładnie 90◦. Azymutu zaś nie da się określić – wszystkie kierunki w poziomie są równie odległe od
kierunku na ISS. Jest to ten sam powód, dla którego nie da się wyznaczyć długości geograficznej na biegunie
północnym ani południowym (i nie ma tam kierunku zachodniego i wschodniego). Współrzędne możemy
zapisać w ten sposób: (A, h) = (−, 90◦).

d) Nietrudno znaleźć pewien inny punkt niż podany w treści zadania, dla którego ISS widać na horyzoncie,
jeśli wiemy, że horyzont dowolnego obserwatora jest powierzchnią styczną do powierzchni Ziemi. Do rysunku
z podpunktu a) wystarczy więc dorysować drugą prostą styczną do Ziemi – to wyznaczy jakiś inny taki punkt
(oznaczmy go jako X). Sytuację przedstawiono na rysunku 2.

S O = (0◦; +40◦)

ISS

R⊕
R⊕ +H

d

X

Rysunek 2: Rysunek poglądowy do podpunktów d) oraz e).

Czerwoną kropką na rysunku oznaczyliśmy punkt opisany w podpunkcie c), dla którego ISS jest w zenicie.
Możemy łatwo zauważyć, że dla obserwatora w punkcie X (odcinek ISS–X jest styczny do powierzchni Ziemi),
ISS znajduje się dokładnie na horyzoncie. Dzięki odpowiednim symetriom, trójkąt S–ISS–X jest przystający
do trójkąta S–ISS–O.

Szczęśliwie się składa, że płaszczyzna rysunku jest równa płaszczyźnie południka 40◦ E. Zatem kąt O–
S–ISS jest równy różnicy szerokości geograficznych między punktem O a punktem, dla którego ISS jest w
zenicie, czyli 20◦. Tyle samo równy jest więc kąt (z przystawania trójkątów) ISS–S–X. Zatem punkt X ma
tę samą długość geograficzną, co punkt O, a jego szerokość geograficzna to 2 · (−20◦) = −40◦, co możemy
zapisać tak:

(λX ;φX) = (+40◦;−40◦).

e) Aby rozwiązać ten podpunkt, należy zauważyć, że z pokładu ISS widoczne będzie „koło na powierzchni
Ziemi” (nazywane profesjonalnie czaszą kuli), tworzone poprzez przecięcie powierzchni Ziemi oraz obrót
trójkąta S–O–ISS wokół osi S–ISS. ISS będzie widzieć wszystkie punkty znajdujące się w odległości po
powierzchni Ziemi mniejszej niż rwid = 20◦

360◦ · 2πR⊕ = 2230 km od czerwonego punktu na rysunku 2. Jak
widać na tym samym rysunku, zakrzywienie Ziemi między punktami O i X (brzegowymi które widać z ISS)
jest znikome i łuk na powierzchni Ziemi między O i X może być przybliżany do linii prostej. Sugeruje to nam,
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że na potrzeby oszacowania zasadne może być korzystanie z przybliżenia powierzchni Ziemi do powierzchni
płaskiej (euklidesowej). Dzięki temu łatwo obliczymy pole „koła”, które widzi ISS:

Sk = πr2wid = 1,56× 107 km2

Pole powierzchni Ziemi to natomiast:

S⊕ = 4πR2
⊕ = 5,10× 108 km2

Zatem ISS widzi następujący fragment Ziemi:

Sk

S⊕
=

1,56× 107 km2

5,10× 108 km2 ≈ 3,1%,

czyli dość niewiele.
Uwagi. Dokładne wyznaczenie, jaki fragment Ziemi jest widoczny z ISS wymaga skorzystania ze wzoru

na pole czaszy sferycznej wykorzystującego funkcję trygonometryczną. Prezentuje się on następująco:

S = 2πR2(1− cosα),

gdzie α to promień kątowy czaszy widziany z perspektywy środka kuli, na której znajduje się czasza (w
naszym przypadku – środek Ziemi, zatem kąt ten wynosi 20◦). Skorzystanie z tego wzoru zwraca nam wynik:
3,02%, co pokazuje, że nasze oszacowanie było sensowne – dla większych promieni kątowych czaszy (czyli
większej wysokości satelity nad Ziemią) oszacowany wynik ze względu na krzywiznę powierzchni Ziemi byłby
coraz bardziej rozbieżny z wzorcowym. Widać to chociażby przechodząc do przypadku granicznego, gdyby
hipotetyczny satelita stale oddalał się od Ziemi, aż do nieskończonej odległości. Oszacowanie zastosowane w
zadaniu sugerowałoby, że wówczas taki obserwator widziałby w danym momencie aż 60% powierzchni Ziemi,
choć szybkie wyobrażenie sobie takiej sytuacji mówi nam, że rzeczywiście widziałby połowę powierzchni
Ziemi znajdującą się po jego stronie.

Wielu uczestników próbowało oszacować część Ziemi widoczną z ISS wyłącznie dzieląc kąty 20◦, 40◦ lub
ich kwadraty przez 360◦ lub odpowiednie kwadraty miar kątowych. Jest to koncepcyjnie błędne, szczególnie
że podejście to najczęściej nie było podparte żadnym uzasadnieniem. W przypadku szacowania, należy
spróbować określić, jakie przybliżenia zastosowało się w celu uzyskania ostatecznego wyniku i przedyskutować
ich zasadność.

autor rozwiązania: Michał Jagodziński
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Zadanie 3
Obserwator znajdujący się na Ziemi widzi odległą gwiazdę (różną od Słońca). Załóżmy przybliżenie:

1 au ≪ d, gdzie d jest odległością obserwator – gwiazda.

a) Wytłumacz zjawisko paralaksy heliocentrycznej. Opisz w jaki sposób obserwator, wykorzystując to
zjawisko, mógłby wyznaczyć odległość do gwiazdy.

b) Wyprowadź wzór potrzebny do obliczenia odległości do gwiazdy znając kąt paralaksy (heliocentrycznej)
do niej.

Teraz rozważmy obserwatora znajdującego się w satelicie obiegającym Ziemię po orbicie o promieniu
r = 2R⊕, również obserwującego gwiazdę znajdującą się w odległości d od niego. Załóżmy przybliżenie:
r ≪ 1 au ≪ d.

c) Rozważmy teraz dwa pomiary położenia gwiazdy oddalone o pół okresu obiegu satelity wokół Ziemi.
Czy możemy analogicznie do podpunktu b) zdefiniować kąt paralaksy (tym razem geocentrycznej)?
Jeśli tak, wyprowadź podobny jak w podpunkcie b) wzór na odległość obserwator – gwiazda. Możesz
pominąć wpływ ruchu Ziemi wokół Słońca na pomiar.

d) Znajdź odległość dh od innej gwiazdy, dla której kąt paralaksy heliocentrycznej jest równy 1 sekundzie
kątowej. Tak samo znajdź odległość dg do gwiazdy, dla której kąt paralaksy geocentrycznej jest równy
1 sekundzie kątowej.

autor: Olaf Krupiński

Rozwiązanie

Rysunek 3: Ilustracja zjawiska paralaksy heliocentrycznej (źródło: Wikipedia / WikiStefan )

Paralaksa, mimo swojej odstraszającej nazwy, jest bardzo powszechnym i w miarę prostym do zwizu-
alizowania zjawiskiem. Każdy, jadąc kiedyś samochodem lub pociągiem, zauważył, że dalekie obiekty (np.
drzewa) przesuwają się dużo wolniej na linii widzenia niż obiekty bliskie (np. lampy na drodze). Opisanie
tego w sposób bardziej „fizyczny” wymaga wprowadzenia wielkości takiej jak kąt paralaksy. Kąt ten określa,
jak bardzo podczas ruchu obserwatora dany obiekt przesunął się względem tła.

a), b) W astronomii zjawisko paralaksy heliocentrycznej jest jednym z podstawowych sposobów na wyzna-
czanie odległości do stosunkowo niedalekich gwiazd. Podstawowa idea zilustrowana jest na rysunku 3.
Podczas obiegu Ziemi wokół Słońca możemy obserwować jedną gwiazdę z dwóch skrajnych pozycji na
orbicie – na lewo i na prawo od linii Słońce–gwiazda.
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Rysunek 4: Paralaksa heliocentryczna

Bardziej ścisły opis zjawiska widoczny jest na rysunku 4, gdzie przedstawiony został również kąt para-
laksy σ, zdefiniowany jako kąt Słońce–gwiazda–Ziemia w skrajnym położeniu. Uważny czytelnik może
zwrócić uwagę, że na rysunku 4 gwiazda znajduje się w płaszczyźnie orbity Ziemi, mimo że w ogólności
wcale tak być nie musi. Jednakże odpowiednie twierdzenie ze stereometrii pozwala uznać, że trójkąt
∆GSZ1 jest zachowany przy dowolnych obrotach prostopadłych do płaszczyzny orbity Ziemi.

Możemy zauważyć, że nasz rysunek wygląda bardzo podobnie do rysunku ze wskazówki – trójkąt
prostokątny z jedną przyprostokątną znacznie większą od drugiej (założenie d ≫ 1 au). Możemy więc
wyrazić nasz kąt paralaksy jako:

σ ≈ 1 au

d
· 180

◦

π
. (1)

Uczestników ciekawych pochodzenia tego przybliżenia zachęcamy do zapoznania się z intrygującym
światem funkcji trygonometrycznych. Kąt paralaksy możemy bezpośrednio zmierzyć, badając położe-
nie gwiazdy na niebie podczas roku. Używając równania 1, możemy za pomocą tych pomiarów określić
odległość do gwiazdy jako:

d =
1au

σ
· 180

◦

π
. (2)

Warto zauważyć, że wielkości d i σ są do siebie odwrotnie proporcjonalne, co oznacza, że stosunkowo
trudno użyć tej metody do pomiaru bardzo odległych gwiazd, ponieważ kąt paralaksy staje się dla nich
bardzo mały i trudny do zmierzenia.

c) W następnym podpunkcie zadania, zamiast orbity Ziemi wokół Słońca, rozważamy ruch obserwatora
w satelicie, obiegającego Ziemie po okręgu. Rozważany promień orbity satelity jest stosunkowo mały
r = 2R⊕ ≪ 1 au. Pozwala to założyć, że Ziemia praktycznie nie poruszy się wokół Słońca, w trakcie
jednego obiegu satelity (o czym mówi też treść zadania). Zauważmy, że wówczas sytuacja staje się
analogiczna do tej z podpunktów a) i b), z lekką zmianą oznaczeń. Przestawiono to na rysunku 5,
gdzie nowy kąt paralaksy geocentrycznej oznaczyliśmy grecką literą ρ. Oczywiście nadal spełnione jest
założenie d ≫ r, a więc możemy użyć wzoru ze wskazówki:

ρ ≈ r

d
· 180

◦

π
. (3)
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Rysunek 5: Paralaksa geocentryczna, przy użyciu satelity

Za pomocą którego, przenosząc zmienne, otrzymamy:

d =
r

ρ
· 180

◦

π
. (4)

Możemy zauważyć, że ten sposób pomiaru odległości jest trochę mniej skuteczny od paralaksy helio-
centrycznej, ponieważ skoro r ≪ 1 au, to zmierzony kąt paralaksy geocentrycznej ρ będzie znacznie
mniejszy od kąta paralaksy heliocentrycznej σ

d) W ostatnim podpunkcie musimy użyć wyprowadzone wzory na odległość, dla konkretnych wartości
paralaksy: σ = 1′′ oraz ρ = 1′′. Wpierw zauważmy zamianę zmiennych:

1′′ =
1

60
· 1′ = 1

60
· 1

60
· 1◦ =

(
1

3600

)◦

≈
(
2,78× 10−4

)◦
Wstawiając to do równania 2, otrzymujemy:

dh ≈ 2,06× 105 au = 3,0857× 1016 m (5)

Co ciekawe, powyższy wynik jest definicją jednostki parsek: 1 pc = 3,0857× 1016 m.

Korzystając następnie z równania 4, otrzymamy wynik dla paralaksy geocentrycznej:

dg ≈ 2,63× 1012 m (6)

a więc około 4 rzędy wielkości mniej niż odległość dh. Oczywiście dg < 1 ly, więc nie znajdziemy żadnej
gwiazdy (innej niż Słońce) o paralaksie geocentrycznej większej niż 1 sekunda kątowa.

Czytelnik może zauważyć, że zadanie 3 było w miarę proste obliczeniowo, wymagało jedynie dobrego
zrozumienia zjawiska paralaksy heliocentrycznej, występującego jako podpunkt w programie merytorycznym
OAJ.

autor rozwiązania: Olaf Krupiński
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Zadanie 4
Pod koniec XV wieku nie były znane żadne sensowne sposoby pomiaru długości geograficznej. Ówczesne

zegary nie nadawały się do transportu na dalekie dystanse i wykorzystywane były głównie zegary słoneczne
pozwalające zmierzyć czas lokalny. Pewną alternatywę stanowiły obserwacje astronomicznych wydarzeń,
których czas mógł być ustalony w znanych miejscach.

W nocy 12 października 1492 o godzinie 2:00 czasu lokalnego załoga statku Krzysztofa Kolumba pierwszy
raz zauważyła wyspę Guanahaní na Bahamach. Na otrzymanej mapie nieba przedstawiono pozycję Księżyca,
zaobserwowaną wówczas z pokładu statku. W tabeli poniżej załączono natomiast przybliżone odległości
kątowe Księżyca odpowiednio od Procjona i Polluksa zmierzone dla różnych dni, zawsze o godzinie 12:00
czasu Greenwich, leżącego na długości geograficznej 0◦.

Oszacuj o której godzinie czasu Greenwich oraz na jakiej długości geograficznej załoga statku dostrzegła
Guanahaní. W obliczeniach pomiń paralaksę Księżyca.

Wskazówka: możesz skorzystać z cyrkla oraz linijki.

Dzień αProcjon αPolluks

10.10.1492 27,5◦ 25,5◦

11.10.1492 16,5◦ 16◦

12.10.1492 10◦ 12,5◦

13.10.1492 15◦ 19◦

Tabela: Odległości kątowe środka tarczy Księżyca od Procjona (αProcjon) i Polluksa (αPolluks) zmierzone w
wybrane dni o godzinie 12:00 czasu Greenwich (λ = 0◦).
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Kod uczestnika:
Po zakończeniu pisania zawodów oddasz tę mapę komisji i zostanie sprawdzona. Możesz, choć nie musisz,
na niej kreślić i pisać. Otrzymasz też drugą kopię tej mapy, która nie będzie zbierana.

autorzy: Maksymilian Wdowiarz-Bilski i Piotr Jędrzejczyk

Rozwiązanie
Rozwiązanie zadania zostanie uzupełnione w niedalekiej przyszłości.
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